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Multicellular natural convection in a vertical slot 

By YEE LEE7 AND SEPPO A. KORPELA 
Department of Mechanical Engineering, The Ohio State Gniversity, Columbus, Ohio 43210 

(Received 13 October 1981 and in revised form 29 July 1982) 

I n  this article we present numerical solutions to multicellular natural convection in 
a vertical enclosure'. The calculated streamlines faithfully represent what has been 
scen in the laboratory by smoke traces in air and particle traces in oils. The calculated 
isotherms for air correspond to reported interferometric patterns. Solutions exhibiting 
travelling waves for water were calculated near conditions where they should occur 
according to linear stability theory. Heat-transfer results for air are givcn and their 
dependence on the aspect ratio of the enclosure exhibited. 

1. Introduction 
Natural convection in a vertical cavity has been under study for the past seventy 

years. The practical aim of the effort has been to relate the heat transfer across the 
cavity to the temperature difference between the vertical sidewalls. The direct way 
to accomplish this is to build a laboratory apparatus and measure the heat transfer. 
Many experiments of this sort were carried out during the early part of this century, 
and the heat-transfer correlations so obtained can still be found in textbooks. They 
have served the design engineer adequately throughout the years. 

Average heat-transfer measurements did not, however, elucidate the structure of 
the flow. To gain a deeper understanding of convection, local measurements and 
theoretical idcas were needed. Eckert '& Carlson (1961) and Elder (1965) showed in 
experiments the form of the temperature and velocity fields, and, on the basis of these, 
the early theoretical ideas of Batchelor (1954) could be refined by Elder (1965) and 
Gill (1966), so that the main features of the flow are understood today. 

The elementary aspects of the flow are obvious to anyone who knows that hot fluid 
rises and cold fluid sinks. For then in a closed cavity the fluid is expected to flow 
up near the hot boundary, turn in the top end, sink near the cold wall to the bottom, 
and there turn again to complete a cycle. With further thought one becomes 
convinced that, provided the fluid properties are constant, this flow is symmetrical 
about the centre of the cavity. This can be tested by writing the equations governing 
the flow and investigating their symmetry properties. The particular symmetrical 
state of the flow is of course determined by the numerical values of the parameters 
of the equations. If the equations have been put into a non-dimensional form, it 
becomes clear that there are only three independent parameters that  describe the 
flow. These are the Rayleigh number R = gPATL3/av, the Prandtl number P = v/a,  
and the aspect ratio H = 1/C. The symbols used to define the parameters are the 
conventional ones, with I being the height of the cavity and C its width. 

The aim of theoretical research is to see how the governing equations can be 
simplified as these parameters assume certain limiting values. With three non- 
dimensional groups present a number of limits can be taken. Batchelor (1954) 
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considered three of them. For a fixed M he examined the flow as H -+ 00, and for a 
fixed H the limits R + 0 and R + co. I n  the first case he showed that in the centre 
region the flow is parallel and heat is transferred across the cavity mainly by 
conduction. This regime of flow has come to be called the conduction regime. To be 
sure, across the ends heat is also convected, but the terminology is useful in classifying 
the flows. The temperature distribution across the midheight of the cavity in t.his flow 
is linear, which in turn leads to a cubic for the vertical velocity. 

The limit of fixed H and R -+ co leads to  emergence of boundary layers on the 
vertical sidewalls and a core in the centre. In  this, the so-called boundary-layer 
regime, heat is transferred primarily by horizontal convection across the ends. The 
flow in the ends is, however, sufficiently complex that the analysis of the flow in the 
boundary-layer regime is still incomplete today. 

For intermediate values of Rayleigh number the flow is said to  be in the transition 
regime. By using a Maeh-Zehnder interferometer, Eckert & Carlson (1961) established 
that, except in the conduction regime, the core in the centre becomes stably stratified, 
meaning that temperature increases with height. Near the midheight the rise is linear. 
Using this fact and assuming that the horizontal velocity is zero, Elder (1965) 
calculated the vertical velocity and the temperature profiles near the midheight. The 
profiles have the proper shape and magnitude if the vertical temperature gradient, 
which is a parameter in his equations, is adjusted to fit the experimental data. 

Gill (1966), a t  about the same time, constructed a boundary-layer theory of the 
flow. However, he was not able to match the boundary layers to the flow conditions 
in the end regions. No simplification of the equations has been found that would allow 
analytical solutions to  be obtained in the region where the flow turns around. Gill 
used the condition that the top and bottom are impermeable to complete his analysis. 
This has been modified by Bejan (1979), who instead required that the vertical heat 
flux in the ends be zero. The heat-transfer correlation derived on this basis is 
reasonably close to many of the experiments and machine computations, but on a 
logarithmic plot its slope is a bit too low. In their studies Gill and Bejan a2ssumed 
the Prandtl number to  be large. Recently Graebel (1980) carried out the analysis 
where this need not be so. 

During the past twent,y years machine calculations have become a viable alternative 
to study fluid flow. In  this period the power ofdigital computers to perform arithmetic 
operations has increased greatly, and better algorithms have been invented as well. 
We mention the studies of Wilkcx & Churchill (1966), Elder (1966), de Vahl Davis 
(1968), Rube1 & Landis (1969), and Newel1 & Schmidt (1970), which give finite- 
difference solutions for natural convection in a vertical cavity, each extending the 
range of the computations to higher values of Rayleigh number and aspect ratio than 
was possible previously. In  the next decade many more studies were completed. Of 
these the work of Quon (1972, 1977) is notable. He gives a lucid account, of the 
boundary-layer regime in a square cavity, confirming as others had noted before him, 
that the flow changes little with Prandtl number as long as the Prandtl number is 
greater than about seven. Of interest also is his observation that a stress-free top 
boundary alters t’he flow neither in the vertical layers nor in the core. The horizontal 
velocity is affected in a region near the top, the thickness of which is about a sixth 
of the total height of the cavity, but the temperature even here remains unaffected. 
These results are consistent with the structure of Gill’s solution, which shows that 
each vertical boundary layer entrains fluid in its upstream half and ejects it in the 
downstream half. While crossing the core the temperature of the fluid does not change. 
Quon’s solution shows this to be true also in the end regions. The entrainment had 
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been suggested by Elder to be responsiblc for the stably stratified thermal structure 
of the core. 

Other studies include that of Roux et al. (1978), one by Kublbeck, Merker & Straub 
(1980) and the work of Lauriat (1980). In the first two the authors investigate flows 
in a square cavity. Roux et al. use a fourth-order Hermitian method which puts the 
finite-difference equations into a block-tridiagonal form allowing for their rapid 
solution. Kublbeck et al., on the other hand, obtain high accuracy by non-uniform grids 
through coordinate stretching, and show in detail in their paper the time evolution 
of the flow. Lauriat investigated four different numerical schemes for convection in 
a cavity of aspect ratio 10. These papers add little new physical insight to the flow. 

I n  addition to providing the basis for understanding the flow in the boundary-layer 
and transition regimes, Elder’s (1965) experiments opened another avenue for 
research; namely, the study of stability of the vertical shear flow. He observed 
multicellular convection in the cavity, attributable to hydrodynamic instability. 
Actually, although unknown in the West, Gershuni (1953) in Russia had already 
attempted to calculate the stability of the flow in the conduction regime. More-accurate 
calculations came later (Rudakov 1967; Birikh et al. 1972, Korpela, Goziim & Baxi 
1973; Ruth 1979). Stability calculations of the flow in the transition and boundary- 
layer regimes appeared also (Gill & Davey 1969; Gill & Kirkham 1970; Hart 1971 ; 
Bergholz 1978). 

What is known now is that a t  low Prandtl numbers for tall cavities steady 
multicellular convection appears a t  sufficiently high Rayleigh numbers. Vest 8: 
Arpaci (1969) observed this in the laboratory for air in a cavity of aspect ratio 33. 
For high-Prandtl-number fluids in very tall cavities two waves appear a t  the onset 
of instability. They propagate in opposite halves of the cavity in the direction of the 
base flow. To see these in the laboratory one would need to build a cavity that is 
several hundred times taller than it is wide. Nobody has undertaken to do this. 

Bergholz’s contribution was to show that the travelling-wave solutions arise also 
from the instability of the transition and boundary-layer regimes, and that they are 
present for low-Prandtl-number fluids in cavities the aspect ratio of which is only 
moderately large. Recently Schinkel (1  980) observed these waves in interferograms 
for air in cavities of aspect ratios ranging from 5 to 9. Bergholz also showed that the 
onset of instability for high-I’randtl-number fluids can in turn set in through 
stationary states. It is, in fact, exactly in this situation in which Elder originally 
observed the multicellular flow. He used oil with P = 1000 in a cavity with an aspect 
ratio in the range from 12 to 60. 

In  a few studies the flow after the onset of instability has been calculated 
numerically. Thomas & de Vahl Davis (1970) did this for a flow in an annular cavity 
of aspect ratio 25 and ratio of the inner to outer radius equal to $. They obtained 
a solution with five cells in a fluid with Prandtl number equal to unity. Pepper & 
Harris (1977) did similar calculations for annuli of aspect ratio 5 and radius ratios 
4 and $, for a fluid with P = 1 .  In reading their paper one soon notes that the contour 
plots they present have been printed upside down, and as they are they would, in 
fact, represent the situation in which the outer wall is heated. Their calculated Nusselt 
numbers are in good agreement with the results of Thomas & de Vahl Davis. When 
they increase the aspect ratio of the annulus to 15, while keeping the radius ratio 
a t  4, their stream patterns show wiggles which could indicate boundary-layer 
instability on the top part of the annulus. The oscillations could also be the result 
of inadequate resolution. We have shown by calculations that multicellular convection 
takes place at the condition in which Thomas & de Vahl Davis obtained it .  The 
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multicellular structure, however, is one of upward-drifting (.ells making the flow 
periodic in time (Choi & Korpela 1980; Lee, Korpela & Horne 1982). 

Pepper & Harris also consider the flow of a high-l’randtl-number fluid in a 
rectangular cavity of aspect ratio 10. I n  this case they saw a thrce-cell structure in 
the centre of the cavity. This had already been calculated earlier by de Vahl Davis 
& Mallinson (1975), and their results represent Elder’s observations very faithfully, 
including the so-called tertiary cells visible in the experiments. A similar calculation 
and further experiments by Seki, Fukusako & Inaba (1978) confirm the structure of 
the flow a t  high Prandtl numbers. For air Grondin dz Roux ( 1  979) show the cxistencac 
of multicellular convection in a cavity of aspect ratio 16. 

Three-dimensional calculations have been carried out by Mallinson & de Vahl Davis 
(1973, 1977) as well as by Ozoe (1976) and Ozoe et aI. (1978). Although in cxpcrimcnts 
the heat transfer has been found to be independent of the depth of the cavity, as long 
as the depth is not too small, the numerical calculations show the flow to be certainly 
three-dimensional. The reason for this is that  the rotating core flow induces something 
like an Ekman layer on the end walls of a cubical box. The features seen in the 
numerical calculations have now also been observed in the laboratory (Morrison & 
Tran 1978). 

In  the following sections we present results of numerical calculations of the 
multicellular flow. Such flows occur only in cavities of large aspect ratio. Most of thc 
numerical studies to date have been for cavities with aspect ratios less than ten. 
Except for liquid metals, for which we have found the multicellular structure to 
emerge when the aspect ratio is as low as six, for air the aspect ratio must be a t  least 
12 before the flow changes to a more-complex structure as a result of instability. 
Our most complete results are for air because of its importance in the design of 
doublepane windows. It was, in fact, this application that originally motivated 
Batchelor (1954) to study this flow. We have also found some travelling-wave 
solutions for water and essentially reproduced the results of de Vahl Davis & 
Mallinson when P = 1000. 

2. Formulation 
Consider a vertical rectangular cavity of height 1 and width L as shown in figure 

1. The left sidewall is held at the temperature T,, which is higher than the temperature 
of the right wall. The top and bottom of the cavity are insulated. A Newtonian 

fluid of density p,  kinematic viscosity v and thermal diffusivity a is contained in the 
cavity. The equations governing the flow and heat transfer can be put into 
non-dimensional forms by scaling the width of the cavity by L,  its height by I, time 
by L2/u,  temperature by AT = T,-T,, and velocities and pressure by U and pu2 
respectively. Here U = g/3ATL2/v is the characteristic thermal velocity obtained by 
balancing the viscous shear force with the buoyant force. In  the expression for the 
buoyancy /3 is the volumetric coefficient of thermal expansion and g the gravitational 
acceleration. Assuming further that density changes are important only in the 
gravitational term and that the temperature T is measured above the temperature of 
the cold wall, the governing equations become, 

v . q  = 0, ( 1 )  
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FIGURE 1 .  A sketch of the vertical slot. 

where the del operator is defined as 
a l a  v = i- +3--, ax Hay 

The quantity q in these equations is the non-dimensional velocity and t is the 
dimensionless time. I n  addition to the Grashof number G =  U L / v  and Prandtl 
number P = v/a which appear as parameters in these equations, the aspect ratio 
H = l / L  of the cavity enters through the definition of V. 

The third dimension of the cavity is taken to be sufficiently large so that a 
two-dimensional approximation of the flow is valid. In  this case i t  is convenient to 
introduce a stream function via the definition 9 = V x $k and vorticity as 
6 = k . (V x q), and then solve the vorticity and energy equation together with the 
Poisson equation for the stream function. That is, we seek numerical solutions to the 
system a< Q aT 

aT G 1 
- = - J (T ,  $)+pV2T, 

= J (5 ,  $1 - -& + v2c, (4) 

at H (5) 

VZ$ = - y  (6) 
subject to the boundary conditions 

$ = - = O ,  a$ T = l  at x = O ,  
ax 

$ = - = O ,  a$ T = O  a t  x = l ,  
ax 

Here 

is the Jacobian derivative. 
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To cast (4) and (5) into a finite-difference form we used the central diffcrence for 
the time derivative, the method of Arakawa (1966) for the Jacobian, and the 
DuForbFrankel (1953) method for the diffusive terms. Roache (1972) has pointed 
out that  this form of differencing is well-suited for flows that exhibit hydrodynamic 
instabilities owing to the conservation properties of Arakawa's schcme. Pesta ( 1970), 
Quon (1972), Horne &, Sullivan (1974) and Wirtz & Liu (1975) have used Arakawa's 
method in natural-convection studies. 

Because the flow domain is rectangular we could advantageously solve the Poisson 
equation by a direct method. The actual program we used was given to us by 
Professor Horne. It is based on a cyclic reduction scheme of Buneman (1969) and 
was written by Horne to carry out calculations of convective flows in porous media. 
The boundary vorticity we determined by the relation first written down by Thom 
(1933). 

The order of accuracy of this way of solving the Boussinesq equations comes out 
to be between 1.85 and 1.96 when square grids are used in a square cavity. The order 
deteriorates somewhat when the grids are not square, which was the case in the 
calculations in tall cavities. The majority of thc calculations we carried out with 17 
grids across the cavity and up to  129 grids in the vertical direction. Thc time step 
is governed by the Courant condition (lui. ?(/Ax + Ivi, ,(/HAy) GAt < 1, and depends on 
the Grashof or Rayleigh number. For example, for air in a square cavity with a 33 x 33 
grid a t  R = 2000 the time step was 1 x and 140 steps were required to reach 
steady state. At R = 100000 we had to reducc the timc step to 2 x l O P  and required 
420 steps to reach steady state using the R = 50000 solution as an initial condition. 
Since we used central differences for time the transient solution is second-order 
accurate in time. The computations for each time step took0.25 ms of central-processor 
time per grid point on an Amdahl 470 computer. 

At the onset of instability the flow for low-Yrandtl-number fluids in cavities with 
H in the range 15-40 is in the conduction regime and the critical Grashof numbers 
for that reason are less than 15 000. If the base flow is accurately calculated at these 
conditions the onset of instability should occur a t  the right value of Grashof number. 
For a fluid with Prandtl number zero our calculated velocsity profiles a t  the midheight 
of a cavity of aspect ratio 15 deviate by at most 0-01 yo from the cubic velocity 
distribution, which holds for an infinitely tall slot. The vertical velocity, in fact, 
departs from the cubic appreciably only in the bottom or top $ of the cavity. This 
comparison with an exact solution gives us confidence that 17 grid points also resolve 
the multicelluiar structure adequately in the horizontal direction. In the vertical 
direction the number of grid points was usually such that we had 10 points per (.ell. 

As the Prandtl number is increased or the cavity has a low aspect ratio, boundary 
layers develop in the vertical sidewalls, and for sufficiently high Raylcigh number 
the boundary layers can only be resolved by increasing the number of grids near thc 
walls in the horizontal direction. Because we could afford only a wrtain amount of 
computer time we needed to find out the maximum value of Raylcigh number for 
which the flow is adequately resolved by the 17 uniform grids across. To establish 
this we carried out a convergence study for air in a square cavity by using 9 x 9,17 x 17 
and 33 x 33 meshes and extrapolating the results so obtained to zero grid size. For 
a 17 x 17 mesh we found the maximum stream function to be 17 yo highcr than its 
extrapolated value a t  R = lo5, and a t  M = lo4 this difkrence was 5 . 9 O / , .  The 
corresponding numbers for a 33 x 33 mesh are 4-7 "i, and 1.6 yo. 

Another measure of the accuracy of the calculations is given by the heat transfer 
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across the cavity. We calculated the vertically averaged Kusselt number a t  both walls 
and across each vertical plane of nodes. At steady state each of these values must 
agree with one another. Although the method we used to cast the Boussinesq 
equations to a finite-difference form is a conservative one, the calculation of the 
Nusselt number was not, with the result that for all meshes the maximum deviation 
from mean in the heat transfer occurs for planes at which the vertical velocity was 
the largest. For the test case on a 17 x 17 mesh the maximum deviation was 7 yo a t  
R = lo5, this diminishing to 1 yo a t  R = lo4. By reasons of symmetry the calculation 
of thc Nusselt number a t  the hot and cold walls gave identical results. Furthermore, 
the wall values varied less with grid size than those across any other vertical plane. 
We found that the vertically averaged Nusselt number calculated with a 17 x 17 mesh 
a t  R = lo5 was 7.2 yo higher than that obtained by Chu & Churchill (1977) and 8.7 yo 
higher than that of Roux et al. (1978). Their results deviated 3-9 yo from one another. 
These differences diminish to 2.6 % and 2.9 yo a t  R = lo4. For a 33 x 33 mesh the cited 
percentages reduce by slightly better than a factor of 2. 

Since we are interested mainly in the onset of multieellular convection and the heat 
transfer just after it, for air we did not calculate flows for which the Rayleigh number 
exceeded 20000. Thus we estimate our Nusselt-number results to  be accurate to about 
3.5 yo. 

3. Results 
I n  this section we show how the Prandtl number, the Grashof number and the 

aspect ratio influence the convective flow in the cavity. Most of the information is 
displayed in contour plots of the stream function and temperature. I n  all the figures 
the hot wall is on the left. The resulting streamlines and isotherms give the same visual 
information that smoke traces and interferometer fringes give in an experiment. The 
plots are shown undistorted by changes in the vertical scale even for the tallest 
cavities to give the viewer the same image as an experiment would. Results for five 
different Prandtl numbers were calculated. Each is discussed in turn in the following. 

3.1. Liquid metals and zero Prandtl number 

A hypothetical fluid with its Prandtl number equal to zero is one whose thermal 
diffusivity approaches infinity. The energy equation in this case reduces (for a 
bounded domain) to the steady-state conduction equation. For a rectangular slot it 
has the particularly simple solution of a linear temperature distribution across the 
slot for the boundary conditions considered. I n  a tall cavity the flow is parallel to 
the vertical sidewalls except in the end regions, the extent of which is of the order 
of the width of the cavity. The streamlines of this flow are shown in figure 2 (a) .  The 
arbitrarily large thermal diffusivity rules out thermal perturbations and the instability 
of the flow, which leads to multicellular convection, is purely hydrodynamic. The way 
in which the flow develops for increasing Grashof number is shown in figures 2 (M). 

The instability for an infinitely tall cavity has been predicted (Korpela et al. 1973) 
to set in a t  = 7932. Figure 2 ( b )  shows a weak cellular convective pattern a t  Q = 8000 
in a cavity of aspect ratio 15. The strongest cells are in the ends, where forced turning 
of the fluid by the boundary aids their development. I n  fact, a higher resolution in 
figure 2(a)  would reveal the end cells at G = 5000 when the flow is certainly stable. 
The effect of the ends on the cellular structure is rather unimportant, even for the 
last cells, judging from the way the streamlines curve. Actually a better view of this 
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(C) 

FIGUKP: 2. Streamlines of flow in a cavity with H = 15 for a fluid with P = 0; 
( a )  (2 = 5000; (11) 8000; (c) 10000; ( d )  15000. 
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FIGIJRE 3. The horizontal velocity at the vertical centreline for the flow shown in figure 2. The 
horizontal scale markings are 2 x apart. 

can be obtained from the horizontal velocity distributions shown in figures 
3 ( a d ) .  

Figure 3 also shows certain weaknesses in our study; namely the horizontal 
boundary layers in the top and bottom are not adequately resolved, and even in the 
centre a t  high values of R a finer grid ought to  be used so that the jaggedness would 
disappear from the velocity profiles. A non-uniform grid tight in the ends would help 
to overcome the first problem; more computer time, the second. At the onset of 
instability a non-dimensional wavenumber equal to 2-69 has been predicted by linear 
theory of hydrodynamic stability. From figure 2 we obtain a = 2.80 at  G = 10000 
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8000 9000 10 000 12 000 15 000 20 000 

10.0 3.05 3.0 1 2.93 2.86 2.82 2 77 
10.5 2.78 2.76 - 2.7 1 2.64 - 

TABLE 1 Non-dimensional wavenumbers based on the size of the t w o  central cells for B fluid w i t h  
I’ = 0 There are total of 4 ?ells in the flow for all values of parameters listed 

and a = 2.70 at 0 = 15000 For lower values of the aspect ratio the wavenumber 
depends on how many c~Als can be fitted into a cavity of a given height. We made 
calculations for cavities of H = 10 and 10.5 and found that,  when there wcrc four cdls 
in the cavity, the wavenumbers varied awording to what is given in table 1. The 
wavenumbers corresponding to H = 10 deviate more from the predictions of the 
stability theory than do those for H = 10.5. It did not surprise us then when we found 
that the flow in a cavity of H = 10 would also depend on the initial conditions. With 
the solution at (r: = 8000 as an initial wntlition we obtained a three-cell solution at 
(2 = 10000, in contrast to a solution with four cells when the Grashof number was 
first increased to 9000 and after that  to 10000. The wavenumber of a three-cell 
solution is 2.26. This dependence on the initial condition was not there a t  H = 10.5, 
but, as mentioned, the wavenumbers in this case were also very nearly equal to that 
which is favoured in an infinitely tall cavity. This non-uniqucness of the initial 
conditions is undoubtably present for many other values of H ,  but having established 
it for one case we did not search for it in other cases M7e did not carry out any 
claleulations for values of A! > 20000, and SO have not seen any further transitions. 
Thus we cannot say whether at higher values of H a transition to a periodic flow is 
possible in a two-dimensional flow or whether the next physically important structure 
is a three-dimensional steady or periodic flow. 

If the Prandtl number of the fluid is increased to the rangc charac%eristiv of liquid 
metals, very little new takes place. The same c d l  structure as was found for P = 0 
develops a t  P = 0.01 and the isotherms show only an exceedingly small periodic 
deviation from the vertical. The average Nusselt number is only 1.0032 at (2 = 20000 
for a cavity of I$ = 15. 

3.2. Air 
In  $3.1 we saw that for a fluid of Y = 0 in a cavity with H = 10 there is a transition 
from a unicellular to a multicellular flow at Q z 8000. If the fluid in the cavity wcre 
now replaced by air ( P  = 0.71), the situation would be quite different. Instead of the 
flow becoming multic~ellular, it enters the transition regime as observed by Eckert 
& Carlson (1961), and, upon further increase in Grashof number, thc boundary-layer 
regime. To see the transition to a multicellular flow one needs a cavity of larger aspect 
ratio. In  figure 4 are shown the stream patterns for air flow in a cavity with H = 20. 
The flow patterns are similar to those for a fluid with Prandtl number zero. The 
transition takes place in the interval 10000 < G < 11000. The corresponding iso- 
therms are shown in figure 5. If the flow were thought to be in the cwnduction regime, 
use of the linear theory of hydrodynamic stability would predict it to go unstable 
at G = 8038, in substantial disagreement with our calculations and the cxpt~irncwts 
of Hollands & Konicek (1973). The experiments show the instability to set in a t  
Q = 11 000 f 510, with which our calculations agree. The reason for the discrepancy 
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(C) (d ( e )  

101 

FIGURE 4. Streamlines of flow in a cavity with H = 20 for air as a function of Grashof number: 
( a )  G = 5000; (bj  10000; (c) 11 000; (dj 12000; (ej 15000; (f) 20000; ( 9 )  25000. 
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( e )  

FIGURE 5.  Isotherms for the flow shown in figure 4 
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G 11 000 12 000 1 5 000 20 000 25 000 

a = 2r /h  2.82 2.78 2.50 2.41 2.33 

TABLE 2. Non-dimensional wavenumbers based on the size of the central cell 
for air in a cavity with H = 20 

FIG 

2.8 X 

2.6 X 

k n a x  

2.4 X 

2.2  x 

10-3 

10-3 

10-3 

10-3 

2.0 x 10-3 
0 104 2~ 104 3 x 1 0 4  

G 

RE 6. Maximum stream function at the centre of the cavity for i..e flow 
shown in figures 4 and 5. 

with the theory becomes clear upon a closer examination of the isotherms in figure 
5. Throughout the cavity (except in the very ends) the isotherms are inclined toward 
the cold wall, with the result that there is a slight vertical temperature gradient in 
the core. Bergholz’s calculations show how much the flow is stabilized by this gradient 
When this is taken into account, agreement is obtained between the stability theory, 
the experiments and the numerical computations. The vertical temperature gradient 
is seen to affect also the strength of the cellular convection. In  contrast with the P = 0 
case, the cells furthest from the centre are now the weakest. The reason follows again 
from the fact that a vertical temperature gradient stabilizes the flow. In  the ends the 
gradient is the strongest, and if the instability is viewed as a local phenomenon, then 
in the ends the departure from the onset of instability is smaller than in the centre, 
and hence the convection is weaker. 

As the Grashof number is increased the cells become stronger and the distance 
between them increases. A t  G = 11 000 the spacing between the centre cell and its 
neighbours gives 2.82 for the non-dimensional wavenumber. This decreases to 2.33 
a t  G = 25000. The trend is shown in table 2. Bergholz’s calculations give tc = 2.80 



104 Y .  Lee and 8. A .  Korpela 

( d )  

FIGURE 7. Effect of aspect ratio on convection of air at G = 15000: (a )  H = 20; 
( b )  17.5; (c) 15; (d )  12.5; ( e )  10; ( f )  7 5 ;  (9 )  5 .  
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( b )  ( d )  

FIGITRE 8. Isotherms for the flow shown in figure ‘7. 
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at the onset of instability, and the experiments of Vcst & Arpaci (1969) and Korpela 
(1974) yield a = 2.5 f 0-2 for a slot with H = 33. 

When we increased the aspect ratio of the slot to H = 40 we obtained similar results 
to those at H = 20. The calculations were carried out on a 17 x 129 grid. The only 
notable difference was that whereas at G‘ = 12000 and 15000 there were 14 cells, this 
number diminished by one when the Grashof number was increased to  20000 and 
25000. 

The maximum stream function at the centre of the cavity we have plotted in figure 
6. Owing to the kind of scale used for the velocity, the stream function remains 
constant as the Grashof number is increased at first. As convection begins to be 
important, the stream function diminishes slightly and then increases sharply at the 
onset of instability. After the transition the flow in each of the cells is in certain ways 
similar to the flow in a cavity the aspect ratio of which is of the order of the 
wavelength of thc cells. The maximum stream function now diminishes with 
increasing Grashof number, giving a clue to how the stream function should be scaled 
in an analytical attempt at the structure of the multicellular flow. 

As has been noted above, a transition to multicellular flow will not take place if 
the aspect ratio is sufficiently small. It is of interest to establish, if only roughly, the 
value of the aspect ratio for which multicellular convection is first expected. From 
calculations such as those shown in figures 7 and 8 it is seen to be between 10 and 
12.5. Lauriat (1981) obtained multicellular convection at H = 11.84. The particular 
value of aspect ratio below which instability from the conduction regime does not 
take place is the result of the following. The instability is a local phenomenon 
determined for low-Prandtl-number fluids by the local velocity profile. The profile 
a t  thc midheight of the cavity is the least stable of the family of profiles that  exist 
in the cavity at various heights. At low values of Rayleigh number, the velocity 
profiles at various heights are nearly the same, and are thus equally susceptible to 
instability. The instability of course does not set in at small values of R. As R 
increases, the end regions penetrate further into the cavity, with the result that  the 
region of potential instability gets smaller. For a cavity with H = 10 the end region 
a t  R = 11 000 has penetrated into the centre before the flow becomes unstable. On 
the other hand, for a cavity with H = 12.5 an unstable region exists at the centre 
at thc critical value of R and a transition to multicellular flow takes place. For 
zero-Prandtl-number fluid there is no vertical stratification of temperature to  alter 
the velocity profiles. As a result the multicellular convection can take place in a cavity 
with an aspect ratio as low as six. 

There have been other calculations of convection of air reported in cavities of aspect 
ratios as high as 20, and even one in which it was 80 (Raithby & Wong 1981), but 
in most of them the transition to a multicellular flow has not been observed. The 
reason could well be that the numerical schemes, which rely on upwind differencing 
to insure numerical stability, also introduce artificial viscosity, which damps thosc 
perturbations to which the flow attempts to feed energy. This artificial damping is 
absent in Arakawa’s method. 

Thc stream patterns shown in figure 4 agree well with the photographs of the flow 
(Vest & Arpaci 1969; Korpela 1974), including the slight tilting of the cells toward 
the cold wall. This gives us confidence that the heat-transfer calculations to be 
discussed next are also reasonably accurate. 

I n  figure 9 the vertically averaged Nusselt number N = hL/k is plotted as a 
function of the Grashof number for cavities with H ranging from 5 to 40. I n  the 
definition of Nusselt number, h is the average heat-transfer coefficient obtained by 
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FIGUEE 9. Nusselt number as a function of Grashof number for flow of air in cavities of various 
aspect ratios. The solid circles are calculations of Raithby & Wong (198l), the dashed lines the 
experiments of ElRherbiny rt al. (1982) 

G x 10-3 

averaging the heat flux over the height of the cavity and dividing the result by the 
temperature difference between the sidewalls. The thermal conductivity k of the fluid 
also appears in the definition of N .  As the Nusselt number is a measure of the 
amplitude of the convective motion, it shows the stable branch of a bifurcated 
solution. To determine the contribution of multicellular convection to the average 
Nusselt number, we also averaged the heat transferred across the central cell and 
calculated from it the Nusselt number corresponding to multicellular convection in 
an infinitely tall cavity. The values obtained were mostly from a calculation for a 
cavity of H = 20, but the additional data from the centre cell in a cavity of H = 40 
fall squarely on top of this, so that one can safely conclude that the data do, in fact, 
represent heat transfer in an infinitely tall cavity. The lowest curve in figure 9 is the 
experimental data of Hollands & Konicek (1973). They obtained i t  by averaging the 
heat transfer over the middle fifth of a cavity with H = 44. Thus the calculations 
and the experimental values are averaged in different ways, so that  exact agreement 
could not be expected. The discrepancy is only about 3.5%. It could probably be 
reduced somewhat by a finer finitc-difference mesh and extrapolation of the results 
to zero grid size. 

Since for a sufficiently tall cavity the heat transfer across each cell no longer 
depends on the aspect ratio, one easily obtains an expression for the average Nusselt 
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1.51 1.41 
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1.65 1.53 

1.58 
1.75 1.62 

- 

- 

- 

- 
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TABLE 3.  Vertically averaged Nusselt numbers for air. P = 0.71. The  last column refers to the 
average Nusselt number for a centre c ~ l l  in a ravity at H = 20. The columns w i t h  asterisks \\ere 
calculated by use of (8). 

number in the multiceliular flow regime in whicsh thc cnd effect is transparent. 'I'hc 
result, is 

N = - N , + - S , + ( l - q ) N c ,  I, 1, 
H H 

where I, and 1, represent the non-dimensional lengths of the end regions a t  thc top 
and bottom, and Nb and N ,  are the respective average Nussclt numbers thcrc. The 
Nusselt number for a cell is denoted by N c .  Surprisingly good agreement is obtainrd 
if we take the heat transfer across the ends to be reprcscntd by that for a cavity 
of aspect ratio 10. Then (7) reduces to 

In  table 3 we have included the values used to construct figure 9 as well as two 
columns calrulated with the aid of (8) for cavities with H = 20 and 40. The agrecmcnt 
between the results calculated from this formula and those obtained from an actual 
cdculation is seen to be very close. 

Returning to figure 9, the filled circles are points calculated hy Raithby & Wong 
(1981). For H = 5, two of their three points fall exactly on our line, whicbh itself 
includes only 4 points. For H = 10 their calculations are 2.5 yo higher than our curve, 
and at H = 20 our calculations agree with theirs to better than 1.5 yo. At H = 40 for 
G = 4000 their point still agrees with our calculation, but at (2 = 14000 thcir Nussclt 
number for H = 40 is substantially lower. In none of their calc+ulations did they obtain 
multiceliular flow, thus the discrepancy in the last point can bc attributed to this 

So far what wc have presented seems to fit well together, for the explanation for 
the increase in the Nusselt number for the lower-aspcct-ratio av i t i e s  can be 
considered to be the result of the energy transported across the ends Becvnt 
experiments by ElSherbiny, Raithby & Hollands (1982) for largc-aspcc.t-ratio 
cavities do not fit this pattern though. These experiments were conducted with an 
apparatus in whicah the top and bottom were made of highly cwnducting matcrial 
Raithby & Wong (1981) have shown by calculations that this kind of end cwndition 
reduces the Nusselt number by about 5 %  for a cavity of H = 20 in the rangc of 
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FIGURE 10. Local Nusselt numbers = h,,, L / k )  for air in a oavit,y o f  H = 20 

Rayleigh numbers of interest here, and by less for cavities of higher aspect ratio. To 
keep figurc 9 from becoming too cluttered we have put  only their experimental data  
for H = 20 and 40 into figure 9. At  H = 10 i t  falls just slightly above our H = 10 
line. But  their data for H = 80 and 110 actually fall between thc H = 20 and 40 lines. 
This is quite unexpected, and the reason for i t  did not become clearer to  us  upon 
further study of their paper. Their apparatus was constructed in such a way tha t  they 
could measure the heat flux across each third of the vertical wall. The measurement 
across the central section agrees with the data  of Hollands & Konivek to  better than 
1.5% (this was communicated to  us by Professor Raithby) and at H = 5 and 10 it 
agrees with the calculations of Raithby & Wong. However, i t  is hard to  think of a 
flow in a cavity of H = 110 which near the bottom, where the heat flux at the hot 
wall is the highest, would cause the average Nusselt number a t  R = 15000 to  inc.reasc. 
from 1.2 to  1.5. Our calcu!ations, as mentioned above, show 14 regularly spawd cells 
in a cavity of H = 40, and there is no reason to  expect anything but mow cells to 
fill a cavity of H = 110, and thus lead to  a diminishing influence of thc ends. 

I n  figure 10 the local Nusselt numbers at the hot wall are plotted for a cavity of 
aspect ratio 20. The local Nusselt number is the ratio of the local heat flux to  the 
conduction heat flux. The figure shows the incrcase in the Nusselt number at the 
centre abovc the conduction value of unity. This is the result of the returning cold 
fluid in a cell causing a crowding of the isotherms near the hot waI1, which in turn 
leads to  a higher temperature gradient in these regions. 

3.3. Water 

Bergholz (1978) has estimated that  for water when H is greater than 97, multicdlular 
convection can take place; below it thc instability is of a travelling-wave tj7pe. For 
values of H = 10 and 15 our raleulations show no trace of travelling waves whenevcr 
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0 0.250 0.285 0.3 15 0.41 5 0.475 0.675 0.825 1.025 

FIQURE ll(a). For caption see facing page. 
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FIGURE 11. Time sequence of an unsteady convection of water in a cavity with H = 25 a t  G = 40000: 
(a )  streamlines; ( b )  isotherms. The leftmost plot is the initial condition a t  G = 20000. 
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I<'IGVRE 12. Temperature oscillations at z = 0.1 and at equidistant intervals between y = 0.5 for 
the lowest curve and y = 0875 for the highest. 

0 ,< G < 40000. For H = 25 Hart (1971) observed the travelling-wave instability to 
set in a t  G = 19400+ 1100, and Bergholtz (1978) predicted that i t  would appear a t  
(2 = 12000. Our numerical results for this case, obtained with a 21 x 129 grid, are 
shown in figures 11 (a, 6 ) .  The entire calculation took 27.7 minutes of central-processor 
time. The first plot on the left is nearly steady flow a t  G = 20000. The flow actually 
never reached steady state but contained small fluctuations in the flow variables. 
With this as an initial condition we increased the Grashof number to 40000 and 
calculated the transient solution. The time step was 5 x lW4. At t = 0.25 four cells 
are apparent in the central portion of the cavity. The cells move upward in the upper 
half of the cavity and downward in the lower half. While they drift towards the ends 
additional cells are formed a t  the centre. By the time t = 0.415 the cellular structure 
a t  the centre has disappeared and only a couple of cells are left in the ends. Shortly 
after this the transient is over. The flow does not become steady, however, but 
remains quasi-periodic. This is evident from the waviness of the isotherms in figure 
11 (6). I n  figure 12 we show it more clearly by plotting the fluctuations of the 
temperature a t  nine locations near the hot wall of the cavity. All of them are a 
distance equal to one-tenth of the cavity width away from the wall. The lowest curve 
gives the trace of the temperature oscillation a t  y = 0.5, the midheight of the slot, 
and the top one a t  y = 0.875. The rest arc a t  equidistant intervals in between. From 
these traces we calculated the wave speed and compared it with the maximum 
vertical velocity. At y = 0-5 the non-dimensional wave speed is 2.2 x lop3, whereas 
the largest vertical velocity is 2.3 x At y = 0.875 the corresponding numbers are 
3.2 x and 1.5 x It is known that for instability of travelling-wave type the 
wave speed is often close to the maximum velocity of the base flow. Thus our 
calculations measure up favourably on this account and they are also of the same 
order in magnitude as the critical wave speeds predicted by Bergholz (1978). 

3.4. Fluids of large Pradtl  number 

For fluids whose I'randtl number is larger than 12.7 the instability from the 
conduction regime sets in as a travelling wave. But this can only be observed in very 
tall cavities. In  a moderately high cavity, as the Grashof number is increased the flow 
will enter the transition and boundary-layer regimes before the instability from the 
conduction regime occurs. I n  figures 13 and 14 we show plots of streamlines and 
isotherms for a flow of a fluid with P = 20 in a cavity with H = 15. For the 
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( b )  (C) 

FIGURE 1 3 .  Streamlines for convection of il fluid with f’= 20 in a cavity of aspect ratio H = 15. 
(a )  0 = 1000, ( h )  5000, ( c )  10000: ( d )  20000; ( e )  30000. 
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( b )  (C) 

FIGURE 14. Isotherms for the flow in figure 13. 
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F r a r m ~  15. St,rrarnlines for convect.ion of a.n oil with t' = 1000 in  a ca.vity of aspwt ratio 
H = 1.5: ( a )  (r'= 400; ( b )  600; (c) 1000: ( d )  1500. 
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FIGIJRE 16. Tsotherms for the flow in figure 15. 
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FIQIJRN 17. ‘I’ernperature along a vertical vrntrr l inrfor  cwivrotion ofan oil with I’ = 1000 in  R cavity 
of aspect ratio fl = 1.5. The values of C are (I(.) 400; ( b )  600; (c) 1000; ( d )  1500. 

calculations fir which G = 1000, 5000 and 10000 wc’ used a 21 x 65 grid. and refined 
it to a 21 x 129 grid whtn 1: was 20000 and 30000. At (r: = 1000 the flow is alrcady 
in the transition regime. The boundary-layer regime is encwuntered for values of G 
equal to 5000 and higher. Characteristic of these flow regimes is the vcrticd 
temperature gradient in the core. We give it the symbol S Its value at the ccntre 
is 0.56 a t  G = 5000 and for 0 = 10000 it is 0.51. These two  values agree with Eldw’s 
(1965) expenmcmtal values for high-Prandtl-number fluids ‘Yo rc,late our calculations 
to Bergholz’s (1978) prcdictioris for the onset of instability we must calculate a scaled 
version of thc vvrtical temperature stratification. It IS given by the cxprcssion 
y = (0.251ZS/H):. UJ taking AS = 0 5 thc values for y at G = 5000, 10000 and 20000 
become 5.37, 6.39 and 7.60 respwtively. Thr states c~~rresponding to th tw  sets of 
parameters are abovc thc, critical (wrv(> for thc tra\-elling-wav(~ rnode but b ~ l o a  the 
critical C U K V ~ ’  for th(. stationary mode. Thus the f o w  ought to shox a travelling-wave. 
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FIGURE 18. Local Nusselt numbers for oil o f  P = 1000 in a cavity of H = 15. 

instability. It does not. Two reasons to explain the disagreement come to mind. First 
there is enough uncertainty in the form of the base flow used in the stability analysis 
that the actual flow may in fact be stable as the numerical solution shows. Equally 
well, thp amplification rate could be so small that in the numerical solution the 
disturbances are not able to develop sufficiently to be observed. We don’t know what 
the right reason for the disagreement is. 

The rightmost plots in figures 13 and 14 correspond to  G = 30000 and y = 8.41. 
These values place the state of the flow above the critical curve for the stationary 
mode, and indeed the numerical results show that a transition to a stationary 
multicellular flow has taken place. 

As a final set of results we present calculations for a fluid with P = 1000. This i s  
sufficiently high value to makc the results insensitive to even large variations in the 
Prandtl number. The pertinent experimental observations to which the numerical 
solution can be rompared consist of the original experiments by Elder (1965), those 
of Vest & Arpaci (1969) and the more recent results of Seki et al. (1978), Actually 
we are here covering old ground, for successful numerical calculations of high- 
Prandtl-number flows have been already reported in this journal by de Vahl Davis 
& Mallinson (1975) and Seki et al. (1978). Nevertheless we judge it significant that, 
unlike the methods used by others, the numerical technique we have employed gives 
believable results for all values of the Prandtl number. Our results for Y = 1000 are 
shown in figures 15 and 16. They were again obtained on a 21 x 129 grid. For his 
experiments Elder determined the transition to a multicellular flow to take place a t  
G = 330 & 30 yo and Vest & Arpaci concluded that in their case the corresponding 
number is41 1 f 10 o/o. Their fluid had P = 900. Assuming that the vertical temperature 
gradient is again about 0.5, the stratification factor in Elder’s study, which had 
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H = 19, comes out to be 6.83. For Vest & Arpaci, who had a slot with H = 20, the 
corresponding number is 6.93. Both of these are slightly above the critical curve 
calculated by Bergholz. In  our calculations we find a t  G = 400 weak cellular motions 
in the central region. Since our aspect ratio is only 15 our stratification factor comes 
out to be 7.6. For this value of y Bergholz predicts a critical Grashof number equal 
to 240. So we are well above it. The shape and orientation of the cells is in good 
agreement with experimental observations. A s  t h e  Grashof number is increased, the 
circulation in the secondary cells becomes stronger and the number of waves in the 
cavity increases first from three to seven, and then two pairs of them combine leading 
to a five cell pattern at  G = 1500. The isotherms of figure 16 show a rather thin 
thermal boundary layer in the vertical sidewalls. For 21 grids across the cavity the 
estimate of Gill (1966) for the boundary-layer thickness, viz S/L = 1*8(H/Ra)b, puts 
only 2 grid points inside the boundary layer. We believe nevertheless that  our results 
are qualitatively correct, as they are similar to what has been observed in 
experiments. 

A different view of the thermal structure is provided by figure 17, in which the 
temperature is plotted along a vertical centreline of the cavity. At the two highest 
values of Grashof number the temperature in the core of a cell is seen to be constant 
with a slight overshoot at the boundaries of the cells. The background vertical 
temperature gradient is not affected by the cells and remains a t  0.5. The contribution 
of the thermal energy transfer by the cells is nil. The local Nusselt numbers in figure 
18 show only slight waviness where the cells are. The same conclusion was drawn by 
Seki et al. based on their experiments. 

4. Final comments 
Thc aim of this study was to calculate the multicellular flow patterns observed in 

laboratory experiments of natural convection in tall vertical enclosures. We were able 
to carry this out for fluids with Prandtl numbers ranging from zero to 1000. Except 
for the case when the Prandtl number is thousand, the results are new. Other attempts 
a t  calculating these flows are likely to have suffered from too much damping in the 
finite-difference method used. We attribute our success to the Arakawa differencing 
of the Jacobian. That this method works well has of course been known to 
meteorologists for a long time already. This study is further affirmation of it. 
Calculations for low Prandtl numbers can be done quite rapidly. At high Prandtl 
numbers they are slowed because of unsteadiness in the flow. The cells do not settle 
down into their final positions as fast as they do for flows of low-Prandtl-number 
fluids. This unsteadiness and restriction on the Courant number, both of which lead 
to long computer runs for high values of Grashof number, prevented us from exploring 
how the multicellular structure might evolve further. We are considering taking it 
up later when powerful computers such as the Cray become common property in 
educational institutions, or when we gain access to one of the existing ones. 

We have shown in this article that those flow features that have been seen in 
experiments and have been predicted by stability theory can be obtained by 
numerical calculations. To get still better agreement with experiments the temper- 
ature dependence of the fluid properties should be incorporated into the equations. 
Equally important is for an experimentalist to consider how the idealized situation 
of constant-temperature sidewalls and insulated ends can be obtained to high 
accuracy in practice. The high local heat transfer near the bottom of the hot wall 
and near the top of the cold wall can cause local non-uniformitics in the wall 
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temperature in thcse regions. This may lead to  unaccounted-for discrepanck in 
making comparisons between the theory and experiments 
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Foundation through Grant 76-18426 for providing funds, and the Instructional and 
Research Computer. Center of The Ohio State University for providing computer time 
to  cwry out this study. 
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